# Contact

The design and content of this site are the responsibility of **Michael Stanley Jones**.

Please address your comments/enquiries to: enquiries@somr.info

You may also find us intermittently on the following Twitter account: @deliquium.

The original intention for this website was to encourage public awareness of an historical medical crime, one that has remained a tightly-kept British state secret now for more than five decades. The matter is of enormous public interest, not least because the motivation behind the crime itself was that of advancing scientific research into areas that would come to provide the seminal knowledge behind much of the technological progress of the last half-century. My investigation into the matter inspired a parallel enquiry into some of the fundamental principles that underpin that scientific and technological impulse.

There are therefore *two* principle concerns of this website, and if there is acknowledged to be a substantive connection between them, that has inevitably to do with late 20th Century developments in science and information technologies, and more broadly with the idea of an burgeoning *technocracy* – the suggestion of a growing alliance between corporate technology and state power – one that might be judged to have atrophied the powers conventionally assigned to liberal-democratic institutions. This link therefore serves as a segue to emphasise the equal importance, to my mind, of what is going on in the Xcetera section of the site, so that that section should not appear, from the point of view of the other, as some kind of afterthought.

Xcetera is concerned with a problem in mathematics and science to do with the way we think about numbers. As a subset of the category defined as *integers*, elements in the series of the *natural numbers* are generally held to represent quantities as their absolute, or ‘integral’, properties. It is argued that this conventional understanding of integers, which is the one widely held amongst mathematicians and scientists adopting mathematical principles, is the cause of a significant oversight with regard to changes in the *relations of proportion* between numerical values, i.e., when those values are transposed out of the decimal rational schema into alternative numerical radices such as those of binary, octal, and hexadecimal, etc.

On the page: The Limits of Rationality it is argued that the relations of proportion between integers are dictated principally by their membership of the restricted group of characters (0-9) as defined by the decimal rational schema; and that corresponding ratios of proportion cannot be assumed to apply between otherwise *numerically equal* values when transposed into alternative numerical radices having either reduced (as in binary or octal, for instance) or extended (as in hexadecimal) member-ranges.

This is shown to be objectively the case by the results published at: Radical Affinity and Variant Proportion in Natural Numbers, which show that for a series of exponential values in decimal, where the logarithmic ratios between those values are consistently equal to 1, the corresponding series of values when transposed into any radix from binary to nonary (base-9) results in logarithmic ratios having no consistent value at all, in each case producing a graph showing a series of variegated peaks and troughs displaying proportional inconsistency.

These findings are previously unacknowledged by mathematicians and information scientists alike, but the import of the findings is that, while the discrete values of individual integers transposed into alternative radices will be ostensibly equal across those radices, the ratios of proportion between those values will not be preserved, as these ratios must be determined *uniquely* according to the range of available digits within any respective radix (0-9 in decimal, 0-7 in octal, for instance); one consequence of which of course is the variable *relative frequency* (or ‘potentiality’) of specific individual digits when compared across radices. This observation has serious consequences in terms of its implications for the logical consistency of data produced within digital information systems, as the logic of those systems generally relies upon the seamless correspondence, not only of ‘integral’ values when transcribed between decimal and the aforementioned radices, but ultimately upon the relations of proportion between those values.

Information Science tends to treat the translation and recording of conventional analogue information into digital format unproblematically. The digital encoding of written, spoken, or visual information is seen to have little effect on the representational content of the message. The process is taken to be neutral, faithful, transparent. While the assessment of quantitative and qualitative differences at the level of the observable world necessarily entails assessments of proportion, the digital encoding of those assessments ultimately involves a reduction, at the level of machine code, to the form of a series of simple binary (or ‘logical’) distinctions between ‘1’ and ‘0’ – positive and negative. The process relies upon a tacit assumption that there exists such a level of fine-grained logical simplicity as the basis of a hierarchy of logical relationships, and which *transcends* all systems of conventional analogue (or indeed *sensory*) representation (be they linguistic, visual, sonic, or whatever); and that therefore we may break down these systems of representation to this level – the digital level – and then re-assemble them, as it were, without corruption. Logic is assumed to operate consistently without limits, as a sort of ‘ambient’ condition of information systems.

In the Xcetera section I am concerned to point out however that the logical relationship between ‘1’ and ‘0’ in a binary system (which equates in quantitative terms with what we understand as their proportional relationship) is derived specifically from their membership of a uniquely defined group of digits limited to two members. It *does not* derive from a set of transcendent logical principles arising elsewhere and having universal applicability (a proposition that, despite its apparent simplicity, may well come as a surprise to many mathematicians and information scientists alike).

As the proportional relationships affecting quantitative expressions within binary are uniquely and restrictively determined, they cannot be assumed to apply (with proportional consistency) to translations of the same expressions into decimal (or into any other number radix, such as octal, or hexadecimal). By extension therefore, the *logical* relationships within a binary system of codes, being subject to the same restrictive determinations, cannot therefore be applied with logical consistency to conventional analogue representations of the observable world, as this would be to invest binary code with a transcendent logical potential that it simply cannot possess – they may be applied to such representations, and the results may appear to be internally consistent, but they will certainly not be logically consistent with the world of objects.

The issue of a failure of logical consistency is one that concerns the relationships *between* data objects – it does not concern the specific accuracy or internal content of data objects themselves (just as the variation in proportion across radices concerns the dynamic relations *between* integers, rather than their specific ‘integral’ numerical values). This means that, from a conventional scientific-positivist perspective, which generally relies for its raw data upon information derived from discrete acts of measurement, the problem will be difficult to recognise or detect (as the data might well appear to possess *internal* consistency). One will however experience the effects of the failure (while being rather mystified as to its causes) in the lack of a reliable correspondence between expectations derived from data analyses, and real-world events.

So that’s some of what Xcetera is all about.. If you think you’re ‘ard enough!

The design and content of this site are the responsibility of **Michael Stanley Jones**.

Please address your comments/enquiries to: enquiries@somr.info

You may also find us intermittently on the following Twitter account: @deliquium.